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ABSTRACT

We introduce a method for detecting latent hierarchical
structure in data based on nonnegative matrix factorization.
Datasets with hierarchical structure arise in a wide variety
of fields, such as document classification, image processing,
and bioinformatics. The proposed method, Neural NMF,
recursively applies topic modeling in layers to discover over-
arching topics encompassing the lower-level features. We
derive a backpropagation scheme that allows us to frame our
method as a neural network. Numerical results on a synthetic
dataset demonstrate that Neural NMF outperforms similar
algorithms on a hierarchical classification task.

Index Terms— nonnegative matrix factorization, hierar-
chical topic modeling, backpropagation

1. INTRODUCTION

Topic modeling is a useful technique for revealing latent
themes in a dataset. Topic modeling methods cluster and clas-
sify data observations in an unsupervised manner or make use
of semisupervision, in which class labels are available for a
subset of data points. Algorithms for topic modeling most of-
ten find application in the domain of document classification
[1], but more recently have found use in image classification
[2] and bioinformatics [3]. Feature extraction is an approach
related to, but distinct from, topic modeling. Where topic
modeling seeks to identify hidden topics and represent data
points by these topics, feature extraction aims to find a few
features that best represent the set for the task at hand (e.g.,
classification) [4].

Nonnegative matrix factorization (NMF) is a popular
method in machine learning because it is able to both ex-
tract features and generate topic models [5, 6]. However,
NMF does not inherently discover hierarchical structure in
its topics. Borrowing techniques from neural networks, we
seek to modify classical nonnegative matrix factorization to
successfully handle hierarchy.
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1.1. Notation

We distinguish matrices and vectors from scalar quantities us-
ing bold font. For a matrix F, Fi,: and F:,j denote row i and
column j, respectively. For sets of indices T and S, FT,: and
F:,S denote the matrix obtained by deleting the rows of F
not in T or the columns of F not in S, respectively. By exten-
sion, vT is the vector v restricted to the entries with indices in
T . We denote the Moore-Penrose pseudoinverse of F as F†.
Entrywise (Hadamard) multiplication and division between F
and G are denoted by F�G and F

G , respectively. The all ones
vector of length k is denoted 1k. All norms denote the Frobe-
nius norm. We perform subscript (indicial) operations before
superscript (pseudoinversion, transposition) operations when
applicable. The interval [0,∞)k is denoted Rk

+. In methods
with L layers, we use F(`) to denote the matrix F at layer `.
We similarly use k(`) as the number of topics at layer `. In
any supervised setting, we use P as the number of classes.

1.2. NMF

For a given data matrix X ∈ RN×M
+ and hidden topic num-

ber k chosen as a hyperparameter, nonnegative matrix factor-
ization (NMF) seeks A ∈ RN×k

+ and S ∈ Rk×M
+ such that

X ≈ AS. This approximate factorization is meant to find few
latent feature vectors which combine to approximately repre-
sent the data points in X; these vectors are called topics. To
find A and S, we wish to solve the minimization problem

min
A≥0,S≥0

‖X−AS‖2. (1)

The nonnegativity restriction on X, A, and S differentiates
NMF from other topic modeling and feature extraction tech-
niques, including principal component analysis (PCA) and
autoencoding. This allows for a natural and intuitive ‘parts-
based’ representation [7]; there are no topics that contribute
in a negative manner. Since all values are nonnegative, only
additive combinations of topic representatives are allowed to
produce data points in X. We can view the columns of the A
matrix as vectors of important features of X, or from a topic
modeling perspective, as k hidden themes in our data. In this
view, the S matrix provides the coefficients to represent each
data point of X as a linear combination of the topics. More-
over, we can view the product AS as a low-rank approxima-



tion of X, since rank(AS) ≤ min(rank(A), rank(S)) ≤ k.
The problem (1) is convex in A and S separately, but non-

convex in both. We therefore cannot expect to consistently
find a global minimum. Several techniques exist for finding
local minima. Multiplicative update schemes, in particular,
are quick and extensible and alternate between fixing A and
S and updating the other to iteratively decrease (1).

1.3. Semisupervised NMF (SSNMF)

A natural extension of NMF is to take advantage of any
known label information in the factorization [8]. Suppose
Y ∈ RP×M is a matrix containing label information for
M objects in P classes and suppose some data may be
missing. Let W ∈ RN×M be the binary indicator ma-
trix for the data, that is Wn,m = 1 if Xn,m is known and
0 otherwise, and let L ∈ RP×M be the label indicator ma-
trix, with L:,m = 1P if the label for object m is known and
0 otherwise. We can incorporate label information and miss-
ing data by adjusting our problem as

min
A,S,B≥0

‖W � (X−AS)‖2F︸ ︷︷ ︸
Reconstruction Error

+λ ‖L� (Y −BS)‖2F︸ ︷︷ ︸
Classification Error

. (2)

The resulting B ∈ RP×k is a classification matrix, with Bi,:

defining a hyperplane that attempts to separate objects in class
i from objects not in class i. Because of the entrywise mul-
tiplication with W and L, (2) restricts the loss to data and
labels which are known. The relative importance of the clas-
sification error is controlled by the user-defined hyperparam-
eter λ. We can iteratively decrease (2) by extending the mul-
tiplicative updates for NMF; details can be found in [8].

1.4. Hierarchical NMF (hNMF)

A further extension of both NMF and SSNMF illuminates hi-
erarchical structure by recursively factorizing the S matrices.
By performing NMF with k = k(0), we reveal k(0) hidden
topics in the data; by repeating the factorization on the S ma-
trix with k = k(1), we further collect the k(0) topics into k(1)

supertopics. This process for L layers is to approximately
factor the data matrix as

X ≈ A(0)S(0),

X ≈ A(0)A(1)S(1),
...

X ≈ A(0)A(1) · · ·A(L)S(L).

(3)

The A(i) matrix represents the how the subtopics at layer i
collect into the supertopics at layer i+ 1.

Note that as L increases, ‖X − A(0)A(1) · · ·A(L)S(L)‖
necessarily increases as error propagates with each step. As a
result, significant error is introduced when L is large. Choos-
ing k(0), k(1), ...k(L) in practice proves difficult when the
number of topics at each layer is unknown, as the number
of possibilities grows combinatorially. Additionally, large

differences between the number of topics for adjacent lay-
ers introduces large error into the factorization. Finally, as
the NMF problem is ill-posed and has an infinite number of
global minima (one may rescale each of the factors), this ill-
posedness is exacerbated in hNMF. There are unicity results
for NMF when the matrix X satisfies specific constraints (see
e.g., [9, 10, 11, 12, 13]), but we do not know of such results
for hNMF; this is an important direction.

1.5. Deep NMF (DNMF)

In [14], the authors make a first step toward bridging the gap
between hNMF and neural networks. Their method achieves
a considerable performance improvement over standard NMF
in classification. The forward process for DNMF is hNMF
with pooling operator, p, applied after each layer of decom-
position to introduce nonlinearity and minimize overfitting.
Without the pooling operation, the DNMF model is identi-
cal to hNMF. The other major contribution of [14] is a pro-
posed backpropagation algorithm meant to refine the result
obtained from the forward process. However, the backprop-
agation technique introduced in [14] differs from backpropa-
gation techniques in neural network settings, as it only prop-
agates one layer at a time and uses multiplicative updates in-
stead of gradient descent to update the values of A and S.

Similar ideas were explored in [15], [16], and [17]. In
[15], the authors develop a hierarchical model in which some
of the nonnegativity constraints are relaxed; however, this
lacks our proposed backpropagation algorithm for training the
model. In [16], the authors propose a NMF backpropaga-
tion algorithm using an “unfolding” approach; however, their
method does not allow for hierarchy. Finally, a method simi-
lar to ours was developed in [17], but differs from ours in that
it lacks the nonnegativity constraints that makes our method
applicable in topic modeling and feature extraction.

2. PROPOSED METHOD: NEURAL NMF (NNMF)

One potentially problematic aspect of DNMF [14] is that their
backpropagation is different than backpropagation typically
used in neural networks. Traditional backpropagation deter-
mines the gradient of a cost function with respect to all the
weights in the network, so that all the weights in the network
may be updated at once. In [14], the update for S(`) is only
allowed to depend on A(`+1) and S(`+1). One of the barriers
to formulating a proper backpropagation step for DNMF is
that in optimization methods like multiplicative updates [18]
or alternating least squares [19], the A and S matrices take
turns acting as the independent and dependent variables in
the updates. This is in contrast to the setting in neural net-
works, where the weights connecting neurons between layers
are independent variables, while the activations of the neurons
are dependent. This separation of independent and dependent



variables allows one to calculate derivatives with respect to
the network weights in a relatively simple way.

Thus, we now make a choice to regard the A matrices as
the independent variables. This is natural since the S matrix is
“passed on ” to the next layer, analogous to the neurons’ acti-
vations being passed to the next network layer. Since we have
chosen to regard the A matrices as the independent variables,
we need to determine the S matrices from the A matrices.
The natural way to do this is to require the S matrices to solve
(4). Suppose A(0), ...,A(L) are given and let S(−1) := X.
Then we let

S(`) = argmin
S≥0

‖S(`−1) −A(`)S‖, ` = 0, · · · ,L. (4)

These definitions require that, given any configuration of in-
dependent variables A(0), . . . ,A(L), the S matrices we com-
pute give us the best possible NMF decompositions.

We define q(A,X), for any nonnegative matrices X and
A with the same number of rows, by

q(A,X) := argmin
S≥0

‖X−AS‖. (5)

This problem is ill-posed if A does not have full column rank.
As the A matrices are always tall and skinny, we make the
reasonable assumption that every A matrix has full column
rank. We can now rephrase the definitions of S matrices as

S(`) = q(A(`),S(`−1)), ` = 0, 1, · · · ,L. (6)

These equations immediately show that S(`′) depends on A(`)

for ` ≤ `′, but not for ` > `′. These equations form the
forward-propagation stage of NNMF.

We now want to differentiate a cost function (correspond-
ing to e.g., semisupervision), which depends on both the A
and S matrices, with respect to the A matrices in order to per-
form backpropagation. This requires us to differentiate the q
function and apply the chain rule. The derivative of q(A,X)
can be computed columnwise in X, so we need only deter-
mine derivative formulas for q(A,x). Our formulas make
use of the fact that differentiation of q(A,x) requires only
pseudoinversion of A:,supp(x) where the support of q(A,x)
is constant. Suppose all S(`) are defined as in (6) and let
T

(`)
m := suppS

(`)
:,m. We define Φ(`,`′),m for L ≥ `′ ≥ ` ≥ 0

by

Φ(`,`′),m :=

(
A

(`′)

:,T
(`′)
m

†
)

:,T
(`′−1)
m

(
A

(`′−1)
:,T

(`′−1)
m

†
)

:,T
(`′−2)
m

. . .

(
A

(`+1)

:,T
(`+1)
m

†
)

:,T
(`)
m

(
A

(`)

:,T
(`)
m

†
)
.

Suppose C is a cost function depending on all the variables
S(`) and A(`). Now we define several matrices which allow
us to state the chain rule applied to C with respect to A(i)

more succintly. We let

d(`,`′),m :=
(
Φ(`,`′),m

)>( ∂C

∂S(`′)

)
T

(`′)
m ,m

,U
(`,`′),m

:,T
(`)
m

c = 0,

and

U
(`,`′),m

:,T
(`)
m

:= −d(`,`′),m
(
S
(`)

T
(`)
m ,m

)>
+
(
S(`−1) −A(`)S(`)

)
:,m

(
d(`,`′,),m

)>(
A

(`)

:,T
(`)
m

†
)>

.

We define ∂C
∂A(`)

∣∣
S

to be the derivative of C with respect to
A(`), holding the S matrices constant; the chain rule yields

∂C

∂A(`)
=

∂C

∂A(`)

∣∣∣∣
S

+
∑

`≤`′≤L
1≤m≤M

U(`,`′),m.

This derivative allows us to perform the gradient descent
step in Algorithm 1. We will present derivations and prove
that this nearly always provides the correct derivative in [20].

Algorithm 1 Neural NMF
Require: data matrix X ∈ RN×M , number of layers L, step

size γ, cost functionC, initial matrices A(i) for i = 0, ...,L
procedure FORWARDPROPAGATION(A(0)...A(`))

for i := 0...L do
S(i) ← q(A(i),S(i−1))

ForwardPropagation(A(0)...A(`))
while not converged do

for i := 0...L do
A(i) ← A(i) − γ ∗ ∂C

∂A(i) . Gradient descent

A(i) ← A
(i)
+ . Project onto positive orthant

ForwardPropagation(A(0)...A(`))

Note that the pseudocode above only provides updates for
the factor matrices, A(i). If one uses additional matrices in
the objective function (such as B in (2)) they need only differ-
entiate with respect to these matrices and update in the same
way. We use this approach in our experiments in Section 3.

3. EXPERIMENTAL RESULTS

We test NNMF on a 87 × 90 noisy toy dataset with a three-
layer hierarchical structure. Starting with two large blocks,
we overlay increasingly smaller and more intense asymmet-
ric regions (with values 1, 2, and 4) along the diagonal, and
finally add a uniform(0, 0.15) noise; see the left plot of Figure
1. We test hNMF, DNMF, and NNMF with one, two, or three
layer structure, and various levels of supervision (results are
averaged over 25 trials); the cost function to which we apply
Algorithm 1 in these experiments is

‖X−A(0) · · ·A(L)S(L)‖2F + ‖L� (Y −BS(L))‖2F . (7)

. The class labels associated to each data point indicate
which of the nine highest intensity blocks contain the max-
imum entry; 40% (semisupervised) or 100% (supervised)
are provided. We present the recovery error (computed



as ‖X − A(0)A(1) · · ·A(L)S(L)‖/‖X‖) and classification
accuracy (proportion of predicted labels matching true la-
bels) in Table 1. Object m is predicted to have label p if
(BS(L))pm = max (BS(L)):m. Noteworthy improvements
of NNMF over hNMF and DNMF are bolded. We expect
the advantage NNMF enjoys is due to the backpropagation
avoiding suboptimal local minima of hNMF and DNMF.

In Figure 1, we visualize the reconstructions produced by
each unsupervised method with two layer structure (k(0) = 9
and k(1) = 4). We cannot resolve all the highest-intensity fea-
tures from the original data, as the NMF approximations have
lower than necessary rank. Although each method captures
some of the two-layer structure, NNMF outperforms hNMF
and DNMF, resolving sharper blocks. In Figure 2, NNMF
outperforms hNMF and DNMF in a semisupervised three-
layer trial (k(0) = 9, k(1) = 4, k(2) = 2).

Table 1. Reconstruction error / classification accuracy
Layers Hier. NMF Deep NMF Neural NMF

Unsuper.
1 0.053 0.031 0.029
2 0.399 0.414 0.310 ∗ a

3 0.860 0.838 0.492

Semisuper.
1 0.049 / 0.933 0.031 / 0.947 0.042 / 1
2 0.374 / 0.926 0.394 / 0.911 0.305 / 1
3 0.676 / 0.930 0.733 / 0.930 0.496 / 0.990 ∗∗

Supervised
1 0.052 / 0.960 0.042 / 0.962 0.042 / 1
2 0.311 / 0.984 0.310 / 0.984 0.307 / 1
3 0.495 / 1 0.494 / 1 0.498 / 1

aEntries marked ∗ and ∗∗ correspond to Figure 1 and Figure 2, resp.

Fig. 1. Unsupervised reconstruction with two-layer structure

Fig. 2. Semisuper. reconstruction with three-layer structure

Fig. 3. Two-layer factors illustrating resolved topic hierarchy

While the reconstruction degrades as the number of lay-
ers increases (since the rank of the reconstruction decreases),
NNMF resolves hierarchical topic structure in the factor ma-
trices, A(i). We visualize these factor matrices in Figures 3
and 4. The factor matrices in Figure 3 resolve the correct topic
structure; one may see that the rows are correctly grouped
into k(0) = 9 topics in A(0), and those topics are then cor-
rectly grouped into k(1) = 4 supertopics in A(1). In Figure 4,
the method does not perfectly resolve the middle layer topic
structure, but does resolve the initial layer topic structure.

Fig. 4. Three-layer factors illustrating topic hierarchy

4. CONCLUSION

We have presented a novel method for multilayer NMF that
incorporates the backpropagation technique from deep learn-
ing to minimize error accumulation. Preliminary tests on toy
datasets show the proposed method outperforms existing mul-
tilayer NMF algorithms. In the near future, we plan to further
compare our method and others on various datasets to find
precise regimes in which we offer improvement.
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